NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
š±
A semigroup is a pair (G,ā )(G,\cdot)(G,ā ) where GGG is a set and ā \cdotā is a binary operation on elements of GGG such that: 1. Closure: g,hāGā āā¹ā āgā hāGg,h\in G\implies g\cdot h\in Gg,hāGā¹gā hāG 2. Associativity: (gā h)ā k=gā (hā k)(g\cdot h)\cdot k=g\cdot(h\cdot k)(gā h)ā k=gā (hā k) 3. Existence of Identity: ā1:1ā g=g\exists1:1\cdot g=gā1:1ā g=g
A semigroup is a group without an inverse.
Ring
Semiring