FIND ME ON

GitHub

LinkedIn

Semigroup

🌱

Definition
AbstractAlgebraNumberTheory

A semigroup is a pair (G,ā‹…)(G,\cdot) where GG is a set and ā‹…\cdot is a binary operation on elements of GG such that: 1. Closure: g,h∈Gā€…ā€ŠāŸ¹ā€…ā€Šgā‹…h∈Gg,h\in G\implies g\cdot h\in G 2. Associativity: (gā‹…h)ā‹…k=gā‹…(hā‹…k)(g\cdot h)\cdot k=g\cdot(h\cdot k) 3. Existence of Identity: ∃1:1ā‹…g=g\exists1:1\cdot g=g

A semigroup is a group without an inverse.

Linked from