FIND ME ON

GitHub

LinkedIn

Diagonal

🌱

Definition
LinearAlgebra

A matrix A=[ai,j]Fn×nA=[a_{i,j}]\in\mathbb{F}^{n\times n} is called diagonal is ai,j=0a_{i,j}=0 whenever iji\not=j i.e.: A:=[a1,10000a2,20000a3,30000an,n] A:= \begin{bmatrix} a_{1,1} & 0 & 0 &\cdots & 0 \\ 0 & a_{2,2} & 0 & \cdots & 0 \\ 0 & 0 & a_{3,3} & \cdots & 0 \\\vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n,n}\\ \end{bmatrix}We say the elements ai,ia_{i,i} are “on the diagonal” of AA.

Using this theorem we can say that if M(T)\mathcal{M}(T) diagonalizable then M(T)=PDP1=[v1TvnT][λ10000λn][v1TvnT]1\begin{align*} \mathcal{M}(T)&=PDP^{-1}\\ &=\begin{bmatrix}v_{1}^T & \cdots & v_n^T \\ \end{bmatrix}\begin{bmatrix}\lambda_{1} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \lambda_{n}\end{bmatrix} \begin{bmatrix}v_{1}^T & \cdots & v_n^T \\ \end{bmatrix}^{-1} \end{align*}where λ1,,λn\lambda_1,\cdots,\lambda_{n} are eigenvalues of TT and v1,,vnv_1,\cdots,v_n are the corresponding eigenvectors.

Linked from