FIND ME ON

GitHub

LinkedIn

Union of Sets

🌱

Definition
LinearAlgebra

Definition

Given two subsets U1,U2VU_1, U_2 \subset V, we define the union of U1U_1 and U2U_2 to be U1U2:={uVuU1 or uU2} \begin{align*} U_1\cup U_2:=\{u\in V|u\in U_1 \text{ or } u\in U_2\} \end{align*} More generally, for U1,....VU_1,....\subset V the union of all UiU_i is i=1Ui:={uVuUi, for some i=1,2,3,} \begin{align*} \bigcup_{i=1}^\infty U_i:=\{u\in V|u\in U_i, \text{ for some } i=1,2,3,\} \end{align*} ## Remark The union i=1Ui\bigcup\limits_{i=1}^\infty U_i is the smallest subset of VV that contains each of UiU_i.

Linked from