FIND ME ON

GitHub

LinkedIn

Properties of Linear Maps

🌱

Theorem
LinearAlgebra

Proposition (Properties of Linear Maps)

  1. Associative: Let T1∈L(V1,V2),T2∈L(V2,V3)T_1\in\mathscr{L}(V_1,V_2),T_2\in\mathscr{L}(V_2,V_3) and T3∈L(V3,V4)T_3\in\mathscr{L}(V_3,V_4). The composition T1∘T2∘T3T_1\circ T_2\circ T_3 is associative, meaning (T1∘T2)∘T3=T1∘(T2∘T3)(T_1\circ T_2)\circ T_3 = T_1\circ (T_2\circ T_3)
  2. Identity: If T∈L(V,W)T\in\mathscr{L}(V,W) then IW∘T=T=T∘IVI_W\circ T = T = T\circ I_V
  3. Distributivity: If S1∈L(V1,V2),T1,T2∈L(V2,V3)S_1\in\mathscr{L}(V_1,V_2),T_1,T_2\in\mathscr{L}(V_2,V_3), and S2∈L(V3,V4)S_2\in \mathscr{L}(V_3,V_4) then (T1+T2)∘S1=T1∘S1+T2∘S1 and S2∘(T1+T2)=S2∘T1+S2∘T2 (T_1+T_2)\circ S_1=T_1\circ S_1 + T_2\circ S_1\text{ and } S_2\circ (T_1 + T_2) = S_2\circ T_1 + S_2\circ T_2