NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let (V,∥⋅∥)(V,\|\cdot\|)(V,∥⋅∥) be a normed vector space. A sequence (vi)i∈N(v_{i})_{i\in\mathbb{N}}(vi)i∈N is a Cauchy sequence if ∀ϵ∈R+,∃N∈N s.t. ∥vk−vi∥<ϵ,∀j,k>N\forall\epsilon\in\mathbb{R}^{+},\exists N\in\mathbb{N}\text{ s.t. }\lVert v_{k}-v_{i} \rVert <\epsilon,\forall j,k>N∀ϵ∈R+,∃N∈N s.t. ∥vk−vi∥<ϵ,∀j,k>Ni.e., for every ϵ∈R+\epsilon\in\mathbb{R}^{+}ϵ∈R+, ∃N∈N\exists N\in\mathbb{N}∃N∈N such that ∥vk−vi∥<ϵ\|v_{k}-v_{i}\|<\epsilon∥vk−vi∥<ϵ for every j,k>Nj,k>Nj,k>N.
Pasted image 20240603174151.png
Cauchy sequences need not converge.
Complete