FIND ME ON

GitHub

LinkedIn

Cauchy Sequence

🌱

Definition
MeasureTheoryRealAnal

Let (V,)(V,\|\cdot\|) be a normed vector space. A sequence (vi)iN(v_{i})_{i\in\mathbb{N}} is a Cauchy sequence if ϵR+,NN s.t. vkvi<ϵ,j,k>N\forall\epsilon\in\mathbb{R}^{+},\exists N\in\mathbb{N}\text{ s.t. }\lVert v_{k}-v_{i} \rVert <\epsilon,\forall j,k>Ni.e., for every ϵR+\epsilon\in\mathbb{R}^{+}, NN\exists N\in\mathbb{N} such that vkvi<ϵ\|v_{k}-v_{i}\|<\epsilon for every j,k>Nj,k>N.

Pasted image 20240603174151.png

Cauchy sequences need not converge.

Linked from