FIND ME ON

GitHub

LinkedIn

Completion

🌱

Definition
MeasureTheory

A completion of a normed vector space (V,)(V,\|\cdot\|) is a normed F\mathbb{F}-vector space (V,)(\overline V,\overline{\|\cdot\|}) such that there exists a linear injection lV:VVl_{V}:V\mapsto\overline V with the following properties: 1. lV=v\overline{\|l_{V}\|}=\|v\| for every vVv\in V; 2. if vV\overline v \in \overline V, then there exists a sequence, (vi)iN(v_{i})_{i\in\mathbb{N}}, for which the sequence (lV(vi))iN(l_{V}(v_{i}))_{i\in\mathbb{N}} converges to v\overline v.

Every normed vector space possesses a completion.