FIND ME ON

GitHub

LinkedIn

Equicontinuous

🌱

Definition
Analysis

Let F\mathscr{F} be a collection of complex-valued functions on a Metric Space (X,d)(X,d). We say F\mathscr{F} is equicontinuous if ϵ>0,δ>0:d(x,y)<δ    f(x)f(y)<ϵ,fF\forall\epsilon>0, \exists\delta>0:d(x,y)<\delta\implies|f(x)-f(y)|<\epsilon,\forall f\in \mathscr{F}

Linked from