NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let F\mathscr{F}F be a collection of complex-valued functions on a Metric Space (X,d)(X,d)(X,d). We say F\mathscr{F}F is equicontinuous if ∀ϵ>0,∃δ>0:d(x,y)<δ ⟹ ∣f(x)−f(y)∣<ϵ,∀f∈F\forall\epsilon>0, \exists\delta>0:d(x,y)<\delta\implies|f(x)-f(y)|<\epsilon,\forall f\in \mathscr{F}∀ϵ>0,∃δ>0:d(x,y)<δ⟹∣f(x)−f(y)∣<ϵ,∀f∈F
Arzelà-Ascoli