NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
š±
If UāRn\mathcal{U}\subset \mathbb{R}^{n}UāRn and VāRm\mathcal{V}\subset \mathbb{R}^{m}VāRm be open sets and let f:UāVf:\mathcal{U}\to \mathcal{V}f:UāV and g:VāRlg:\mathcal{V}\to \mathbb{R}^{l}g:VāRl be maps of Differentiation. Then the composition gāf:UāRlg\circ f:\mathcal{U}\to \mathbb{R}^{l}gāf:UāRl is of class CrC^{r}Cr, and its derivative is given by D(gāf)(x)=Dg(f(x))āDf(x)āL(Rn;Rl)\boldsymbol D(g\circ f)(\boldsymbol x)=\boldsymbol Dg(f(\boldsymbol x))\circ \boldsymbol Df(\boldsymbol x)\in \mathscr{L}(\mathbb{R}^{n};\mathbb{R}^{l})D(gāf)(x)=Dg(f(x))āDf(x)āL(Rn;Rl)