FIND ME ON

GitHub

LinkedIn

Chain rule (derivative)

🌱

Theorem

If UāŠ‚Rn\mathcal{U}\subset \mathbb{R}^{n} and VāŠ‚Rm\mathcal{V}\subset \mathbb{R}^{m} be open sets and let f:U→Vf:\mathcal{U}\to \mathcal{V} and g:V→Rlg:\mathcal{V}\to \mathbb{R}^{l} be maps of Differentiation. Then the composition g∘f:U→Rlg\circ f:\mathcal{U}\to \mathbb{R}^{l} is of class CrC^{r}, and its derivative is given by D(g∘f)(x)=Dg(f(x))∘Df(x)∈L(Rn;Rl)\boldsymbol D(g\circ f)(\boldsymbol x)=\boldsymbol Dg(f(\boldsymbol x))\circ \boldsymbol Df(\boldsymbol x)\in \mathscr{L}(\mathbb{R}^{n};\mathbb{R}^{l})