FIND ME ON

GitHub

LinkedIn

Jensen's Inequality

🌱

Theorem
MeasureTheory

Let fL1(R,B(R),μ)f\in\mathscr{L}^{1}(\mathbb{R},\mathcal{B}(\mathbb{R}),\mu), let φ:RR\varphi:\mathbb{R}\to \mathbb{R} convex (implying continuity, implying measurability) and assume φfL1(R,B(R),μ)\varphi\circ f\in\mathscr{L}^{1}(\mathbb{R},\mathcal{B}(\mathbb{R}),\mu). Also, μ(R)=1\mu(\mathbb{R})=1 then φ(Rfdμ)R(φf)dμ\varphi\left( \int\limits _{\mathbb{R}}f \, d\mu \right)\le \int\limits _{\mathbb{R}}(\varphi\circ f) \, d\mu ## Corollary RfdμRfdμ\left|\int\limits _{\mathbb{R}}f \, d\mu \right|\le \int\limits _{\mathbb{R}}|f| \, d\mu ## Example exe^{x} is Convex on R\mathbb{R} so we have for any fL1(μ)f\in\mathscr{L}^{1}(\mu):efdμefdμe^{\int\limits f \, d\mu }\le\int\limits e^{f} \, d\mu