FIND ME ON

GitHub

LinkedIn

Closure of Measurability

🌱

Theorem
MeasureTheoryAnalysis

Theorem

Let u,v:XRu,v:X\to \mathbb{R} be measurable functions where (X,M),(R,B(R))(X,\mathcal{M}),(\mathbb{R},\mathcal{B}(\mathbb{R})) are measurable spaces then: 1. u+v, uv, u:XRu+v,\ uv,\ |u|:X\to \mathbb{R} and u+iv:XCu+iv:X\to \mathbb{C} are measurable. 2. If f,g:XCf,g:X\to \mathbb{C} are measurable, then f+g, fg, Re(f), Im(f):XCf+g,\ fg,\ Re(f),\ Im(f):X\to \mathbb{C}are measurable. 3. If EXE\subseteq X then EM    1E is measurableE\in\mathcal{M}\iff \mathbb{1}_{E}\text{ is measurable} 4. If f:XCf:X\to \mathbb{C} is measurable, we can write f=αff=\alpha \cdot|f| where α\alpha and f|f| are measurable and α=1|\alpha|=1

Linked from