FIND ME ON

GitHub

LinkedIn

Monotone Class

🌱

Definition
MeasureTheory

Definition

Let G\mathcal{G} be a collection of sets. Suppose that if (Aj)jβ‰₯1,(Bj)jβ‰₯1βŠ†G(A_{j})_{j\ge 1},(B_{j})_{j\ge 1}\subseteq \mathcal{G} are such that AjβŠ†Aj+1Β andΒ BjβŠ‡Bj+1βˆ€jβ‰₯1A_{j}\subseteq A_{j+1}\text{ and }B_{j}\supseteq B_{j+1}\quad\forall j\ge 1then upon setting A=⋃j=1∞AjA=\bigcup_{j=1}^{\infty}A_{j} and B=β‹‚j=1∞BjB=\bigcap_{j=1}^{\infty}B_{j}, we have that A,B∈GA,B\in\mathcal{G}. In this case, we call G\mathcal{G} a monotone class.

Linked from