NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
For x∈X,y∈Yx \in X,y\in Yx∈X,y∈Y let Ex={y∈Y:(x,y)∈E}Ey={x∈X:(x,y)∈E}\begin{align*} E_{x}&=\{ y\in Y:(x,y)\in E \}\\ E^{y}&=\{ x \in X:(x,y)\in E \} \end{align*}ExEy={y∈Y:(x,y)∈E}={x∈X:(x,y)∈E} If E∈P(=M⊗N)E\in\mathscr{P}(=\mathscr{M}\otimes \mathscr{N})E∈P(=M⊗N), then ∀x∈X,∀y∈Y\forall x \in X,\forall y \in Y∀x∈X,∀y∈Y we have Ex∈N and Ey∈ME_{x}\in\mathscr{N}\text{ and }E^{y}\in\mathscr{M}Ex∈N and Ey∈M
A Summary of MATH 891