NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let f:X×Y→Cf:X\times Y\to \mathbb{C}f:X×Y→C. Then for x∈X,y∈Yx \in X,y\in Yx∈X,y∈Y we define fx:Y→C,fx(y)=f(x,y)fy:X→C,fy(x)=f(x,y)\begin{align*} f_{x}:Y\to \mathbb{C},&\quad f_{x}(y)=f(x,y)\\ f_{y}:X\to \mathbb{C},&\quad f_{y}(x)=f(x,y) \end{align*}fx:Y→C,fy:X→C,fx(y)=f(x,y)fy(x)=f(x,y)Then, suppose that fff is P\mathscr{P}P-measurable. Then ∀x∈X,∀y∈Y\forall x \in X,\forall y \in Y∀x∈X,∀y∈Y: - fxf_{x}fx is N\mathscr{N}N-measurable - fyf^{y}fy is M\mathscr{M}M-measurable
A Summary of MATH 891