FIND ME ON

GitHub

LinkedIn

Slices of product measurable function are in measurable in resultant σ-algebras

🌱

Theorem
MeasureTheory

Definition

Let f:X×YCf:X\times Y\to \mathbb{C}. Then for xX,yYx \in X,y\in Y we define fx:YC,fx(y)=f(x,y)fy:XC,fy(x)=f(x,y)\begin{align*} f_{x}:Y\to \mathbb{C},&\quad f_{x}(y)=f(x,y)\\ f_{y}:X\to \mathbb{C},&\quad f_{y}(x)=f(x,y) \end{align*}Then, suppose that ff is P\mathscr{P}-measurable. Then xX,yY\forall x \in X,\forall y \in Y: - fxf_{x} is N\mathscr{N}-measurable - fyf^{y} is M\mathscr{M}-measurable

Linked from