NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
The map λ∗:P(X)→R+∪{∞}\lambda^{*}:\mathcal{P}(X)\to \mathbb{R}^{+}\cup\{\infty\}λ∗:P(X)→R+∪{∞} is an outer measure if: 1. λ∗(∅)=0\lambda^{*}(\emptyset)=0λ∗(∅)=0 2. Monotonicity: A⊂B ⟹ λ∗(A)≤λ∗(B)A\subset B\implies\lambda^{*}(A)\le\lambda^{*}(B)A⊂B⟹λ∗(A)≤λ∗(B) 3. Countable Subadditivity: A1,A2,⋯∈P(X) ⟹ λ∗(⋃n=1∞An)≤∑n=1∞λ∗(An)A_{1},A_{2},\dots\in\mathcal{P}(X)\implies\lambda^{*}\left( \bigcup_{n=1}^\infty A_{n} \right)\le\sum_{n=1}^{\infty}\lambda^{*}(A_{n})A1,A2,⋯∈P(X)⟹λ∗(n=1⋃∞An)≤n=1∑∞λ∗(An)