FIND ME ON

GitHub

LinkedIn

Riemann Integral

🌱

Definition
StochasticDiffs

Intro

There exists systems modeled by equations of the form x(ti+1)=x(ti)+f(ti,x(ti))(ti+1ti)    0=t0<t1<<tN=1(1)\tag{1} x(t_{i+1})=x(t_{i})+f(t_{i},x(t_{i}))(t_{i+1}-t_{i}) \ \ \ \ 0=t_{0}<t_{1}<\cdots<t_{N}=1 “In the limit” as (t0,,tN)(t_{0},\dots,t_{N}) of [0,1][0,1] gets finer (i.e. maxiti+1ti0\max_{i}\mid t_{i+1}-t_{i}\mid\to 0) leads to an integral equation of the form x(t)=x(0)+0tf(s,x(s))dsx(t)=x(0)+\int \limits_{0}^tf(s,x(s)) \, ds where the integral is the Riemann Integral.

Problems with The Riemann Integral

Let fn:[0,1]Rf_{n}:[0,1]\to \mathbb{R} be a sequence of Riemann-integrable functions on [0,1][0,1], there are two issues: 1. Assume f:[0,1]R\exists f:[0,1]\to \mathbb{R} such that fn(x)f(x)f_{n}(x)\to f(x) as nn\to \infty, x[0,1]\forall x \in[0,1] (i.e. (fn)nN(f_{n})_{n\in\mathbb{N}} converges pointwise on [0,1][0,1] to ff) then, it does not follow that ff is Riemann-integrable 2. Even if ff happens to be Riemann-integrable, it does not follow that limn01fn(x)dx=01f(x)dx\lim_{ n \to \infty } \int\limits_{0}^{1}f_{n}(x) \, dx =\int\limits _{0}^{1}f(x) \, dx i.e., the limit and Riemann integral cannot be always interchanged.


Definition

A function f:[0,1]Rf:[0,1]\to \mathbb{R} is Riemann integrable if ϵ>0,δ>0\forall\epsilon>0, \exists\delta>0 such that for each subdivision π=(t0,,tN(π))\pi=(t_{0},\dots,t_{N(\pi)}) of [0,1][0,1] we have that if the subdivision is fine enough then δ(π)<δ    Sf,πuSf,πl<ϵ\delta(\pi)<\delta \implies|S_{f,\pi}^{u}-S_{f,\pi}^{\mathscr{l}}|<\epsilon

Linked from