FIND ME ON

GitHub

LinkedIn

Pointwise Convergence

🌱

Definition
RealAnal

Definition

Let IāŠ‚RI\subset \mathbb{R} be an any interval and let (fn)n∈N(f_{n})_{n\in\mathbb{N}} be a sequence of real-valued functions on II: 1. The sequence converges pointwise on II if the limit lim⁔nā†’āˆžfn(x)\lim_{ n \to \infty } f_{n}(x) exists for each point x∈Ix\in I 2. The series āˆ‘n=1āˆžfn(x)\sum_{n=1}^{\infty}f_{n}(x)converges pointwise on II is the series Convergence for each point x∈Ix\in I 3. (fn)n∈N(f_{n})_{n\in\mathbb{N}} converges pointwise on II iff āˆ€Ļµ>0,Ā āˆ€x∈I, ∃N>0:∣fn(x)āˆ’f(x)∣<ĻµĀ āˆ€n≄N\forall\epsilon>0,\ \forall x\in I,\ \exists N>0 :|f_{n}(x)-f(x)|<\epsilon\ \forall n\ge N