Definition
Let IāR be an any interval and let (fnā)nāNā be a sequence of real-valued functions on I: 1. The sequence converges pointwise on I if the limit nāālimāfnā(x) exists for each point xāI 2. The series n=1āāāfnā(x)converges pointwise on I is the series Convergence for each point xāI 3. (fnā)nāNā converges pointwise on I iff āϵ>0,Ā āxāI,Ā āN>0:ā£fnā(x)āf(x)ā£<ϵ ānā„N