FIND ME ON

GitHub

LinkedIn

Atlas

🌱

For rN{}{ω}r\in \mathbb{N}\cup \{ \infty \}\cup \{ \omega \}, a Cr\boldsymbol C^{\boldsymbol r}-atlas for XX is a collection A={(Ua,ϕa)}aA\mathscr{A}=\{ (\mathcal{U}_{a},\phi_{a}) \}_{a\in A} of charts with the properties that (i) X=aAUaX=\bigcup_{a\in A}\mathcal{U}_{a}and (ii) that wheneverUaUb\mathcal{U_{a}}\cap \mathcal{U}_{b}\neq \emptyset we have 1. ϕa(UaUb)\phi_{a}(\mathcal{U}_{a}\cap \mathcal{U}_{b}) and ϕb(UaUb)\phi_{b}(\mathcal{U}_{a}\cap \mathcal{U}_{b}) are open subsets of Rn\mathbb{R}^{n}. 2. The is a Diffeomorphism from ϕa(UaUb)\phi_{a}(\mathcal{U}_{a}\cap \mathcal{U}_{b}) to ϕb(UaUb)\phi_{b}(\mathcal{U}_{a}\cap \mathcal{U}_{b}).

For two charts on XX, (Ua,ϕa)(\mathcal{U}_{a},\phi_{a}) and (Ub,ϕb)(\mathcal{U}_{b},\phi_{b}) the overlap map ϕab\phi_{ab} is defined as follows ϕab:=ϕbϕa1ϕa(UaUb)\phi_{ab}:=\phi_{b}\circ\phi_{a}^{-1}|\phi_{a}(\mathcal{U}_{a}\cap \mathcal{U}_{b})

Linked from