NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Two charts (U,ϕ:U→Rn),(V,ψ:V→Rn)(U,\phi : U → \mathbb{R}^{n}), (V, ψ : V → \mathbb{R}^{n})(U,ϕ:U→Rn),(V,ψ:V→Rn) of a Topological Manifold are C∞C^{\infty}C∞-compatible if the two maps φ◦ψ−1:ψ(U∩V)→ϕ(U∩V)ψ◦ϕ−1:ϕ(U∩V)→ψ(U∩V)\begin{align*} φ ◦ ψ^{-1} : ψ(U ∩V ) → \phi (U ∩V )\\ ψ ◦ \phi^{-1} : \phi (U ∩V ) → ψ(U ∩V ) \end{align*}φ◦ψ−1:ψ(U∩V)→ϕ(U∩V)ψ◦ϕ−1:ϕ(U∩V)→ψ(U∩V) are smooth. We call these maps transition functions.