FIND ME ON

GitHub

LinkedIn

Compatible

🌱

GeometryManifolds

Two charts (U,ϕ:URn),(V,ψ:VRn)(U,\phi : U → \mathbb{R}^{n}), (V, ψ : V → \mathbb{R}^{n}) of a Topological Manifold are CC^{\infty}-compatible if the two maps φψ1:ψ(UV)ϕ(UV)ψϕ1:ϕ(UV)ψ(UV)\begin{align*} φ ◦ ψ^{-1} : ψ(U ∩V ) → \phi (U ∩V )\\ ψ ◦ \phi^{-1} : \phi (U ∩V ) → ψ(U ∩V ) \end{align*} are smooth. We call these maps transition functions.