NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
The arithmetic function d(n)d(n)d(n) counts the number of positive divisors of nnn and is defined as d(n)=∏i=1k(αi+1)d(n)=\prod_{i=1}^{k}(\alpha_{i}+1)d(n)=i=1∏k(αi+1)where we recall by the Fundamental Theorem of Arithmetic that n=∏i=1kpiαin=\prod_{i=1}^{k}p_{i}^{\alpha_{i}}n=i=1∏kpiαi ## Note d(n)d(n)d(n) is Multiplicative.