FIND ME ON

GitHub

LinkedIn

Theorem 1.16

🌱

Theorem
NumberTheory

Theorem

Let b∈Z,n∈Nb\in\mathbb{Z},n\in\mathbb{N} 1. d∣nā€…ā€ŠāŸ¹ā€…ā€Š(bdāˆ’1)∣(bnāˆ’1)d|n\implies(b^{d}-1)|(b^{n}-1) 2. \begin{array} &&(b,m)=1 \\ &b^{a}\equiv 1\pmod{m} \\ &b^{c}\equiv 1\pmod{m} \end{array}\implies b^{d}\equiv 1\pmod{m}where d=(a,c)d=(a,c).