NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
š±
Let bāZ,nāNb\in\mathbb{Z},n\in\mathbb{N}bāZ,nāN 1. dā£nā āā¹ā ā(bdā1)ā£(bnā1)d|n\implies(b^{d}-1)|(b^{n}-1)dā£nā¹(bdā1)ā£(bnā1) 2. \begin{array} &&(b,m)=1 \\ &b^{a}\equiv 1\pmod{m} \\ &b^{c}\equiv 1\pmod{m} \end{array}\implies b^{d}\equiv 1\pmod{m}where d=(a,c)d=(a,c)d=(a,c).