FIND ME ON

GitHub

LinkedIn

Theorem 1.6

🌱

Theorem
NumberTheory

Theorem

For any two integers a,b∈Za,b\in\mathbb{Z} with b=ΜΈ0b\not=0, βˆƒx0,y0∈Z\exists x_{0},y_{0}\in\mathbb{Z} such that for d=(a,b)d=(a,b), we have by Theorem 1.1 ax0+by0=dax_{0}+by_{0}=dGiven this information we have that all integer solutions of ax+by=dax+by=d are given by the parameterization $$x=x0+tbdy=y0βˆ’tad\begin{align*} x&=x_{0}+\frac{tb}{d}\\\\ y&=y_{0}-\frac{ta}{d} \end{align*}$$ for t∈Zt\in\mathbb{Z}.