FIND ME ON

GitHub

LinkedIn

Gauss's Formula

🌱

Theorem
NumberTheory

Theorem

Let pp be prime. If NdN_{d} denotes the number of monic irreducible polynomials of degree dd (where dnd\le n) in Fp[x]\mathbb{F}_{p}[x] then pn=dndNdp^{n}=\sum_{d|n}dN_{d} which by the Möbius Inversion Formula gives us nNn=dnμ(d)pnd    Nn=1ndnμ(d)pnd\begin{align*} nN_{n}&=\sum_{d|n}\mu(d)p^{\frac{n}{d}}\\ &\iff\\ N_{n}&=\frac{1}{n}\sum_{d|n}\mu(d)p^{\frac{n}{d}} \end{align*}where μ\mu is the Möbius Function.

Corollary

Nn1N_{n}\ge 1 for every value of n1n\ge1. i.e. For every value of nn, there is an irreducible polynomial of degree nn in Fp[x]\mathbb{F}_{p}[x].

Intuition

This gives us an analytic formula Nn=1ndnμ(d)pndN_{n}=\frac{1}{n}\sum_{d|n}\mu(d)p^{\frac{n}{d}}giving us a way to find the number of monic irreducible polynomials of degree nn in Fp[x]\mathbb{F}_{p}[x].