FIND ME ON

GitHub

LinkedIn

Quadratic Residue

🌱

Definition
NumberTheory

Definition

The subgroup Fpβˆ—2\mathbb{F}_{p}^{*2} of Fpβˆ—\mathbb{F}_{p}^{*} (Finite Field with pp prime) has index 22 and consists of squares. If gg is a primitive root of Fpβˆ—\mathbb{F}_{p}^{*}, then g2g^{2} is a generator of Fpβˆ—2\mathbb{F}_{p}^{*2}. Since gpβˆ’12≑̸1(modp)g^{\frac{p-1}{2}}\not\equiv1\pmod{p} and 0≑gpβˆ’1βˆ’1≑(gpβˆ’12βˆ’1))(gpβˆ’12+1)(modp)0\equiv g^{p-1}-1\equiv(g^{\frac{p-1}{2}}-1))(g^{\frac{p-1}{2}}+1)\pmod{p} we see that gpβˆ’12β‰‘βˆ’1(modp)g^{\frac{p-1}{2}}\equiv-1\pmod{p} when gg is a primitive root (modp)\pmod{p} of Fpβˆ—\mathbb{F}_{p}^{*}. Fpβˆ—2\mathbb{F}_{p}^{*2} is called the subgroup of squares. We define elements of Fpβˆ—2\mathbb{F}_{p}^{*2} as quadratic residues.