Introduction
Letβs say we observe a realization of X0β,X1β,β¦,XNβ from a \mboxMarkov(Ξ»,P). How do we estimate the transition matrix P? Well lets define some things:
L=P(X0β=x0β,β¦,XNβ=xNβ)=Ξ»x0ββpx0β,x1βββ―pxNβ1β,xNββ ### Log-likelihood log(L)=log(Ξ»X0ββ)+i,jβSββ(k=0βNβ1β1{Xkβ=i,Xk+1β=j}β)log(pijβ)
For i,jβS the maximal likelihood estimator for P is P^ijβ=k=0βNβ1β1{Xkβ=i}βk=0βNβ1β1{Xkβ=i,Xk+1β=j}ββ
Assume P is irreducible and positive recurrent. Then for any i,jβS P(nββlimβP^ijβ=Pijβ)=1