FIND ME ON

GitHub

LinkedIn

Fixed-Length (Block) Code

🌱

Definition
InfoTheory

Given integer D2, n1D\ge2, \ n\ge1 and K=K(n)K=K(n), a (K,n)(K,n) DD-ary fixed-length (or block) code C\mathcal{C} for a DMS {Xi}i=1\{X_i\}_{i=1}^\infty with alphabet X\mathcal{X} consists of all the following pair (f,g)(f,g) of encoding and decoding functions: ### Encoder: f:Xn{0,1,,D1}Kf:\mathcal{X}^n\to\{0,1,\cdots,D-1\}^K ### Decoder: g:{0,1,,D1}KXng:\{0,1,\cdots,D-1\}^K\to\mathcal{X}^n The codebook is written as C=f(Xn)={f(an):anXn}=\mbox"setofcodewords"\mathcal{C}=f(\mathcal{X}^n)=\{f(a^n):a^n\in\mathcal{X}^n\}=\mbox{"set of codewords"} where f(an)f(a^n) is the codeword for source n-tuple ana^n.

Linked from