NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let C\mathcal{C}C be a UD DDD-ary n-th order VLC for a discrete source {Xi}i=1∞\{X_i\}_{i=1}^\infty{Xi}i=1∞ with alphabet X\mathcal{X}X and let l1,⋯ ,lM\mathscr{l}_{1},\cdots,\mathscr{l}_{M}l1,⋯,lM be the lengths of the code’s M=∣X∣MM=|\mathcal{X}|^MM=∣X∣M codewords. Then these codeword lengths satisfy the Kraft Inequality with base DDD ∑i=1MD−li≤1\sum\limits_{i=1}^{M}D^{-\mathscr{l}_{i}}\le1i=1∑MD−li≤1