FIND ME ON

GitHub

LinkedIn

Kac's Lemma (Stationary Ergodic)

🌱

InfoTheory

Introduction

Let RnR_{n} be the last time XnX^n appeared in the past Rn(Xn)=min{j0:Xjj+n1=Xn}R_{n}(X^{n})=min\{ j\ge 0:X_{-j}^{-j+n-1}=X^{n} \}Let us define a new source alphabet U=Xn\mathcal{U}=\mathcal{X}^{n} and source {Ui}\{ U_{i} \} by setting Ui=Xii+n1,  i=0,±1,±2,U_{i}=X_{i}^{i+n-1}, \ \ i=0,\pm1,\pm2,\dotsWe see the new process is also stationary. >[!lem] Kac’s Lemma >For any uUu\in \mathcal{U} such that P(U1=u)>0P(U_{1}=u)>0 let Qu(i)=P(Ui+1=u,Uju for i+1<j<1U1=u)Q_{u}(i)=P(U_{-i+1}=u,U_{j}\not=u\text{ for }-i+1<j<1|U_{1}=u)for i=1,2,i=1,2,\dots. Then E[Rn(Xn)Xn=xn]=1P(Xn=xn)E[R_{n}(X^{n})|X^{n}=x^{n}]=\frac{1}{P(X^{n}=x^{n})}for stationary ergodic sources.