NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
š±
If C\mathcal{C}C is the Shannon-Fano Code for the distribution q(xn)q(x^{n})q(xn) and XnX^{n}Xn has pmf p(xn)p(x^{n})p(xn) then we have the following bound for the redundancy 1nD(pā„q)ā¤R(Cn,p)<1nD(pā„q)+1n\begin{align*} \\ \frac{1}{n} D(p\|q)\le R(\mathcal{C}_{n},p)< \frac{1}{n}D(p\|q)+ \frac{1}{n} \end{align*}n1āD(pā„q)ā¤R(Cnā,p)<n1āD(pā„q)+n1āā the 1n\frac{1}{n}n1ā becomes a 2n\frac{2}{n}n2ā if arithmetic coding is used instead.