NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
π±
Pe(Cm,n):=P(V^m=ΜΈVm)=βvmβVmPVm(vm)βynβYn:gsc(yn=ΜΈvm)PYnβ£Xn(ynβ£fsc(vm))\begin{align*} P_e(\mathcal{C}_{m,n}):&=P(\hat V^{m}\not=V^{m})\\ &=\sum\limits_{v^{m}\in V^{m}}P_{V^{m}}(v^{m})\sum\limits_{y^{n}\in\mathcal{Y}^{n}:g_{sc}(y^{n}\not=v^{m})}P_{Y^{n}|X^{n}}(y^{n}|f_{sc}(v^{m})) \end{align*}Peβ(Cm,nβ):β=P(V^mξ =Vm)=vmβVmββPVmβ(vm)ynβYn:gscβ(ynξ =vm)ββPYnβ£Xnβ(ynβ£fscβ(vm))β
- n=n(m)n=n(m)n=n(m) i.e.Β nnn is a function of mmm - PVm(vm)P_{V^{m}}(v^{m})PVmβ(vm) is the source distribution (given) - PYnβ£Xn(ynβ£fsc(vm))P_{Y^{n}|X^{n}}(y^{n}|f_{sc}(v^{m}))PYnβ£Xnβ(ynβ£fscβ(vm)) is the channel distribution (given) - fsc(vm)f_{sc}(v^{m})fscβ(vm) is the source-channel codeword
Source-Channel Fixed-Length Code
Lossless Joint Source-Channel Coding Theorem