FIND ME ON

GitHub

LinkedIn

Uniform Quantization of Real-Valued Source

🌱

Theorem
InfoTheory

Lemma

Consider a real-valued RV XX with support SX=[a,b)S_{X}=[a,b) and pdf fXf_{X} such that: 1. fXlog2fXf_{X}\log_{2}f_{X} is Riemann-integrable (i.e. integrable in the sense we’re originally familiar with) and, 2. abfX(t)log2fX(t)dt=-\int_{a}^{b}f_{X}(t)\log_{2}f_{X}(t)dt=\inftyor the entropy over the support is infinite.

Let [X]n[X]_{n} be the uniform quantization of XX with quantization step size Δ=ba2n\Delta=\frac{b-a}{2^{n}}i.e. with nn-bit accuracy.

Then for nn sufficiently large, H([X]n)abfX(t)log2fX(t)dt + n(bits)\tag{bits}H([X]_{n})\approx-\int_{a}^{b}f_{X}(t)\log_{2}f_{X}(t)dt \ + \ ni.e. limn[H([X]n)n]=abfX(t)log2fX(t)dt\lim_{n\to\infty}\left[H([X]_{n})-n\right]=-\int_{a}^{b}f_{X}(t)\log_{2}f_{X}(t)dt ## Note This result also holds for any real-valued RV with: 1. Generally unbounded support and, 2. Well-defined pdf

Linked from