NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let a1,⋯ ,ana_1,\cdots,a_na1,⋯,an and b1,⋯ ,bnb_1,\cdots,b_nb1,⋯,bn be positive real numbers. Then ∑i=1nailogaibi≥(∑i=1nai)log∑i=1nai∑i=1nbi\sum_{i=1}^na_i\log\frac{a_i}{b_i}\ge\left(\sum_{i=1}^na_i\right)\log\frac{\sum_{i=1}^na_i}{\sum_{i=1}^nb_i}i=1∑nailogbiai≥(i=1∑nai)log∑i=1nbi∑i=1nai with equality if and only if aibi= constant ∀i=1,⋯ ,n\frac{a_i}{b_i}=\text{ constant }\forall i=1,\cdots,nbiai= constant ∀i=1,⋯,n