Introduction
After investigating the Capacity of Uncorrelated Parallel Gaussian Channels we would like to look at the problem of optimal power allotment PK=(P1,…,PK)subject to the constraint i=1∑KPi≤Pthat maximizes C(P) in C(P)=i=1∑K21log(1+σi2Pi)(∗)We first note that log2(1+σi2Pi) is increasing in Pi hence C(P) is maximized by setting i=1∑KPi=P. So now we want to maximize ∗ over PK=(P1,…,PK) subject to the constraints i=1∑KPi=P \mboxand Pi≥0, i=1,…,K(∗∗) # Problem Want to find PK=(P1,…,PK):Pi≥0,i=1,…,K\mboxandi=1∑KPi=PmaxC(P)where C(P)=i=1∑K21log2(1+σi2Pi).
Solution
Using the Lagrange Multipliers Technique, set - n=K with xn=Pn (i.e. xi=Pi, i=1,…,n) - f(xn)=−C(P)=−i=1∑n21log2(1+σi2xi) - gi(xn)=−xi≤0, i=1,…,n (i.e. m=n=K) - h(xn)=i=1∑nxi−P=0 (i.e. l=1) After some math stuff we get the following solution C(P)=i=1∑K21log2(1+σi2(Θ−σi2)+)where (Θ−σi2)+=max{0,Θ−σi2} (i.e. ReLU function) and Θ is chosen so that i=1∑K(Θ−σi2)+=P where Pi=(Θ−σi2)+ i.e. the “Water-filling principle”.