FIND ME ON

GitHub

LinkedIn

Optimal Power Allotment

🌱

InfoTheory

Introduction

After investigating the Capacity of Uncorrelated Parallel Gaussian Channels we would like to look at the problem of optimal power allotment PK=(P1,,PK)P^{K}=(P_{1},\ldots,P_{K})subject to the constraint i=1KPiP\sum\limits_{i=1}^{K}P_{i}\le Pthat maximizes C(P)C(P) in C(P)=i=1K12log(1+Piσi2)()\tag{$*$}C(P)=\sum\limits_{i=1}^{K} \frac{1}{2}\log\left(1+ \frac{P_{i}}{\sigma_{i}^{2}}\right)We first note that log2(1+Piσi2)\log_{2}\left(1+ \frac{P_{i}}{\sigma^{2}_{i}}\right) is increasing in PiP_{i} hence C(P)C(P) is maximized by setting i=1KPi=P\sum\limits_{i=1}^{K}P_{i}=P. So now we want to maximize * over PK=(P1,,PK)P^{K}=(P_{1},\ldots,P_{K}) subject to the constraints i=1KPi=P \mboxand Pi0, i=1,,K()\tag{$**$}\sum\limits_{i=1}^{K}P_{i}=P \ \mbox{and} \ P_{i}\ge0, \ i=1,\ldots,K # Problem Want to find maxPK=(P1,,PK):Pi0,i=1,,K\mboxandi=1KPi=PC(P)\max_{P^{K}=(P_{1},\ldots,P_{K}):P_{i}\ge0,i=1,\ldots,K\mbox{ and }\sum\limits_{i=1}^{K}P_{i}=P} C(P)where C(P)=i=1K12log2(1+Piσi2)C(P)=\sum\limits_{i=1}^{K} \frac{1}{2}\log_{2}\left(1+ \frac{P_{i}}{\sigma_{i}^{2}}\right).

Solution

Using the Lagrange Multipliers Technique, set - n=Kn=K with xn=Pnx^{n}=P^{n} (i.e. xi=Pi, i=1,,nx_{i}=P_{i}, \ i=1,\ldots,n) - f(xn)=C(P)=i=1n12log2(1+xiσi2)f(x^{n})=-C(P)=-\sum\limits_{i=1}^{n} \frac{1}{2}\log_{2}\left(1+ \frac{x_{i}}{\sigma_{i}^{2}}\right) - gi(xn)=xi0, i=1,,ng_{i}(x^{n})=-x_{i}\le0, \ i=1,\ldots,n (i.e. m=n=Km=n=K) - h(xn)=i=1nxiP=0h(x^{n})=\sum\limits_{i=1}^{n}x_{i}-P=0 (i.e. l=1l=1) After some math stuff we get the following solution C(P)=i=1K12log2(1+(Θσi2)+σi2)C(P)=\sum\limits_{i=1}^{K} \frac{1}{2}\log_{2}\left(1+ \frac{(\Theta-\sigma_{i}^{2})^{+}}{\sigma_{i}^{2}} \right)where (Θσi2)+=max{0,Θσi2}(\Theta-\sigma_{i}^{2})^{+}=\max\{0,\Theta-\sigma_{i}^{2}\} (i.e. ReLU function) and Θ\Theta is chosen so that i=1K(Θσi2)+=P\sum\limits_{i=1}^{K}(\Theta-\sigma_{i}^{2})^{+}=P where Pi=(Θσi2)+P_{i}=(\Theta-\sigma_{i}^{2})^{+} i.e. the “Water-filling principle”.

Linked from