FIND ME ON

GitHub

LinkedIn

System SNR

🌱

Definition
InfoTheory

Definition

For a closed-loop predictive quantizer we define the system SNR in terms of the closed-loop prediction gain, GclpG_{\text{clp}} and coding gain GQG_{Q} (not in dB) SNRsys=GclpGQ=E[Xn2]E[en2]E[en2]E[(enāˆ’e^n)2]\text{SNR}_{\text{sys}}=G_{\text{clp}}G_{Q}=\frac{E[X_{n}^{2}]}{E[e_{n}^{2}]}\frac{E[e_{n}^{2}]}{E[(e_{n}-\hat{e}_{n})^{2}]}or simply in dB as: SNRsys=10log⁔10Gclp+SNRQĀ Ā Ā [dB]\text{SNR}_{\text{sys}}=10\log_{10}G_{\text{clp}}+\text{SNR}_{Q} \ \ \ [\text{dB}] ## Note GclpG_{\text{clp}} and GQG_{Q} are interdependent hence we cannot fix one to maximize the other.

Increasing GclpG_{\text{clp}} does not necessarily increase SNRsys\text{SNR}_{\text{sys}}, although in practice it usually does.

Linked from