FIND ME ON

GitHub

LinkedIn

WSS Predictor Coefficients

🌱

Definition
InfoTheory

Simplified Solution to Closed-loop Predictor Coefficients Problem

For WSS processes an optimal a=(a1,…,am)T\mathbf{a}=(a_{1},\dots,a_{m})^{T} must satisfy Rma=vm\mathbf{R}_{m}\mathbf{a}=\mathbf{v}_{m}where Rm=[r0r1…rm−1r1r0…rm−2⋮⋮⋱⋮rm−1rm−2…r0]vm=[r1r2⋮rm]\mathbf{R}_{m}=\begin{bmatrix}r_{0} & r_{1} & \dots & r_{m-1} \\ r_{1} & r_{0} & \dots & r_{m-2} \\ \vdots & \vdots & \ddots & \vdots \\ r_{m-1} & r_{m-2} & \dots & r_{0}\end{bmatrix}\quad \mathbf{v}_{m}=\begin{bmatrix}r_{1} \\ r_{2} \\ \vdots \\ r_{m}\end{bmatrix}Note how the symmetric nature of these processes (the second property) greatly simplifies the predictor coefficients problem.

If Rm\mathbf{R}_{m} invertible a=Rm−1vm\mathbf{a}=\mathbf{R}_{m}^{-1}\mathbf{v}_{m} ## Note Rm\mathbf{R}_{m} and the optimal a\mathbf{a} depend only on the prediction order mm, not the time index nn.

Results

Now let c=(c0,c1,…,cm)T=(1,−a1,−a2,…,−am)T=(1,−a)T\mathbf{c}=(c_{0},c_{1},\dots,c_{m})^{T}=(1,-a_{1},-a_{2},\dots,-a_{m})^{T}=(1,-\mathbf{a})^{T}then E[en2]=E[(Xn−∑i=1maiXn−i)2]=E[(∑i=0mciXn−i)2]=E[∑k=0m∑j=0mckcjXn−kXn−j]=∑k=0m∑j=0mcjrj−kck=cTRm+1c\begin{align*} E[e_{n}^{2}]&=E\left[ \left( X_{n}-\sum_{i=1}^{m}a_{i}X_{n-i} \right)^{2} \right]\\ &=E\left[ \left( \sum_{i=0}^{m}c_{i}X_{n-i} \right)^{2} \right]\\ &=E\left[ \sum_{k=0}^{m}\sum_{j=0}^{m}c_{k}c_{j}X_{n-k}X_{n-j} \right]\\ &=\sum_{k=0}^{m}\sum_{j=0}^{m}c_{j}r_{j-k}c_{k}\\ &=\mathbf{c}^{T}\mathbf{R}_{m+1}\mathbf{c} \end{align*}This gives us the following results 1. For an optimal c\mathbf{c} we have cTRm+1c=0\mathbf{c}^{T}\mathbf{R}_{m+1}\mathbf{c}=0 iff Rm+1\mathbf{R}_{m+1} is singular. Hence E[en2]=0  ⟺  Rm+1 is singularE[e_{n}^{2}]=0\iff \mathbf{R}_{m+1}\text{ is singular} 2. If Rm\mathbf{R}_{m} is nonsingular ∀m≥1\forall m\ge 1, the WSS process is called nondeterministic 3. If a\mathbf{a} is optimal, vm=Rm−1a\mathbf{v}_{m}=\mathbf{R}_{m}^{-1}\mathbf{a}, so E[en2]=r0−aTvm=r0−∑j=1majrjE[e_{n}^{2}]=r_{0}-\mathbf{a}^{T}\mathbf{v}_{m}=r_{0}-\sum_{j=1}^{m}a_{j}r_{j}

Linked from