For WSS processes an optimal a=(a1​,…,am​)T must satisfy Rm​a=vm​where Rm​=​r0​r1​⋮rm−1​​r1​r0​⋮rm−2​​……⋱…​rm−1​rm−2​⋮r0​​​vm​=​r1​r2​⋮rm​​​Note how the symmetric nature of these processes (the second property) greatly simplifies the predictor coefficients problem.
If Rm​invertiblea=Rm−1​vm​ ## Note Rm​ and the optimala depend only on the prediction orderm, not the time index n.
Results
Now let c=(c0​,c1​,…,cm​)T=(1,−a1​,−a2​,…,−am​)T=(1,−a)Tthen E[en2​]​=E​(Xn​−i=1∑m​ai​Xn−i​)2​=E​(i=0∑m​ci​Xn−i​)2​=E[k=0∑m​j=0∑m​ck​cj​Xn−k​Xn−j​]=k=0∑m​j=0∑m​cj​rj−k​ck​=cTRm+1​c​This gives us the following results 1. For an optimalc we have cTRm+1​c=0 iff Rm+1​ is singular. Hence E[en2​]=0⟺Rm+1​ is singular 2. If Rm​ is nonsingular∀m≥1, the WSS process is called nondeterministic 3. If a is optimal, vm​=Rm−1​a, so E[en2​]=r0​−aTvm​=r0​−j=1∑m​aj​rj​