Recall
In our closed-loop linear predictor we defined the error as enβ=Xnββi=1βmβaiβXnβiβWe then have that E[enβXnβjβ]β=E[(Xnββi=1βmβaiβXnβiβ)Xnβjβ]=E[XnβXnβjβ]βk=1βmβaiβE[XnβkβXnβjβ]βWe see that from (*), a1β,β¦,amβ is optimal if and only if E[enβXnβjβ]=0, j=1,β¦,m. # Theorem The linear predictor X^nβ=βk=1mβakβXnβkβ is optimal in the MSE sense if and only if the prediction error is orthogonal to all Xnβjβ i.e.X^nβΒ optimalΒ βΊ(XnββX^nβ)β₯XnβjβΒ Β Β j=1,β¦,m