FIND ME ON

GitHub

LinkedIn

Encoder Decoder Structure of Quantization

🌱

Definition
InfoTheory

Summary

  • Encoder: E:R{1,,N}\mathcal{E}:\mathbb{R}\to \{ 1,\dots,N \} defined by E(x)=j    xRj\mathcal{E}(x)=j\iff x\in R_{j}i.e. we map each input to one of our NN levels
  • Decoder: D:{1,,N}{y1,,yN}\mathcal{D}:\{ 1,\dots,N \}\to \{ y_{1},\dots,y_{N} \} defined by D(j)=yj\mathcal{D}(j)=y_{j}i.e. We map each of our NN levels to a reproduction point

Hence, we can redefine our scalar quantizer QQ in terms of the encoder and decoder Q(x)=D(E(x))Q(x)=\mathcal{D}(\mathcal{E}(x))We also define the rate of QQ in terms of the number of levels it admits: R(Q)=log2N bits/sampleR(Q)=\log_{2}N\text{ bits/sample}