FIND ME ON

GitHub

LinkedIn

Performance Analysis of Quantizers

🌱

Definition
InfoTheory

The distortion of an optimal NN-level quantizer is defined as Dāˆ—(N)=min⁔Q∈QNE[d(X,Q(X))]D^{*}(N)=\min_{Q\in\mathcal{Q}_{N}}E[d(X,Q(X))]Let X∼fX\sim f, let our distortion measure be MSE then Dāˆ—(N)=min⁔y1<⋯<yNāˆ‘i=1N∫xiāˆ’1xi(xāˆ’yi)2f(x) dxāŸg(y1,…,yN)D^{*}(N)=\min_{y_{1}<\dots<y_{N}}\underbrace{ \sum_{i=1}^{N}\int\limits _{x_{i-1}}^{x_{i}}(x-y_{i})^{2}f(x) \, dx }_{ g(y_{1},\dots,y_{N}) } where xi=12(yi+yi+1),Ā i=1,…,Nāˆ’1x_{i}=\frac{1}{2}(y_{i}+y_{i+1}), \ i=1,\dots,N-1.

So we see that determining the optimal distortion, Dāˆ—(N)D^{*}(N) and the optimal quantizer Qāˆ—Q^{*} involves the minimization of a real function of NN variables. This is computationally very complex hence we need a separate approach!

Companding Quantization

Now we fix (a,b)(a,b) and let QG,NQ_{G,N} be the NN-level companding realization of our quantizer. By the proposition Dāˆ—(N)=min⁔Q∈QNE[(Xāˆ’Q(X))2]=min⁔GE[(Xāˆ’QG,N)2]D^{*}(N)=\min_{Q\in\mathcal{Q}_{N}}E[(X-Q(X))^{2}]=\min_{G}E[(X-Q_{G,N})^{2}] Now we would like to solve for min⁔GE[(Xāˆ’QG,N)2]\min_{G}E[(X-Q_{G,N})^{2}]. We do this under the assumption that NN is large (i.e.Ā ā€œhigh-resolution conditionsā€).