FIND ME ON

GitHub

LinkedIn

Conditional Variance

🌱

Definition
ProbabilityStochasticProcesses

Definition

The conditional variance of an RV XX given Y=yY=y is \mboxVar(XY=y)=E[X2Y=y]E[XY=y]2\mbox{Var}(X|Y=y)=E[X^2|Y=y]-E[X|Y=y]^2 # Theorem (Conditional Variance Formula) We find that \mboxVar(XY)\mbox{Var}(X|Y) is RV and given this information we find that \mboxVar(X)=E[\mboxVar(XY)]+\mboxVar(E[XY])\mbox{Var}(X)=E[\mbox{Var}(X|Y)]+\mbox{Var}(E[X|Y])