FIND ME ON

GitHub

LinkedIn

Moment

🌱

Definition
ProbabilityStochasticProcesses

For a rv XX, E[X2]\mathbb{E}[X^{2}] is the second moment of XX. If E[X2]<\mathbb{E}[X^{2}]<\infty, then XL2X\in \mathscr{L}^{2}.

For rv XX, kZ+k\in \mathbb{Z}_{+}, we say E[Xk]\mathbb{E}[X^{k}] is the kthk^{th} moment of XX (well-defined for XLkX\in \mathscr{L}^{k}).

For a random variable XX, its moment-generating function (MGF) is MX(t)=E[etX],\mboxfortRM_X(t)=E[e^{tX}], \mbox{ for } t\in\mathbb{R} if M(t)<M(t)<\infty for each tRt\in\mathbb{R}.

1. Uniqueness: Let XX and YY be RVs with MGFs MX(t),MY(t)M_X(t),M_Y(t). Then MX(t)=MY(t) t(δ,δ), δ>0    FX(x)=FY(y)M_X(t)=M_Y(t)\ \forall t\in (-\delta,\delta), \ \delta>0 \implies F_X(x)=F_Y(y) 2. Let a,bR, Y=a+bXa,b\in\mathbb{R}, \ Y=a+bX. Then MY(t)=E[etY]=E[et(a+bX)]=eatMX(tb)M_Y(t)=E[e^{tY}]=E[e^{t(a+bX)}]=e^{at}M_X(tb) 3. Derivative: If MGF exists, its derivatives are: M(k)(t)=E[ddtketX]=E[XketX]M^{(k)}(t)=E\left[\frac{d}{dt^k}e^{tX}\right]=E\left[X^ke^{tX}\right] as a result: E[X]=M(0),  E[X2]=M(0)E[X]=M'(0), \ \ E[X^2]=M''(0) and so on.

Linked from