FIND ME ON

GitHub

LinkedIn

Cauchy-Schwartz Inequality

🌱

Theorem
Probability

For rvs X,YL2(Ω,F,P)X,Y\in \mathscr{L}^{2}(\Omega,\mathcal{F},\mathbb{P}) then E[XY]E[X2]E[Y2]\mathbb{E}[|XY|]\le \sqrt{ \mathbb{E}[X^{2}] }\sqrt{ \mathbb{E}[Y^{2}] }

\begin{proof} Note first that ab12(a2+b2),a,b0ab\le \frac{1}{2}(a^{2}+b^{2}),\forall a,b\ge {0}. Thus, for rv A,B0A,B\ge 0 E[AB]12(E[A2]+E[B2]).\mathbb{E}[AB]\le \frac{1}{2}(\mathbb{E}[A^{2}]+\mathbb{E}[B^{2}]).Then, let A=XE[X2],B=YE[Y2]A=\frac{|X|}{\sqrt{ \mathbb{E_{}\left[ X^{2} \right]} }},B=\frac{|Y|}{\sqrt{ \mathbb{E}[Y^{2}] }}, then E[XY]E[X2]E[Y2]12(1+1)    E[XY]E[X2]E[Y2]\frac{\mathbb{E}[|X|\cdot|Y|]}{\sqrt{ \mathbb{E}[X^{2}] }\sqrt{ \mathbb{E}[Y^{2}] }}\le \frac{1}{2}(1+1)\iff \mathbb{E}[|X|\cdot|Y|]\le\sqrt{ \mathbb{E}[X^{2}] }\sqrt{ \mathbb{E}[Y^{2}] } \end{proof}

XL2    XL1X\in \mathscr{L}^{2}\implies X\in \mathscr{L}^{1}

X,YL2    X+Y,c+XL2,cRX,Y\in \mathscr{L}^{2}\implies X+Y,c+X\in \mathscr{L}^{2},c\in \mathbb{R}

Linked from