NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Discrete Given a discrete RV XXX with range X\mathscr{X}X and pmf ppp, and given g:R→Rg:\mathbb{R}\to\mathbb{R}g:R→R, then E[g(X)]=∑x∈Xg(x) p(x)E[g(X)]=\sum_{x\in\mathscr{X}}g(x)\ p(x)E[g(X)]=x∈X∑g(x) p(x)Continuous Given a continuous RV XXX with range X\mathscr{X}X and pdf fff, and given g:R→Rg:\mathbb{R}\to\mathbb{R}g:R→R, then E[g(X)]=∫Xg(x)f(x) dxE[g(X)]=\int_{\mathscr{X}} g(x)f(x) \ dxE[g(X)]=∫Xg(x)f(x) dx only if:E[∣g(X)∣]=∫∣g(x)∣f(x) dx<∞E[|g(X)|]=\int|g(x)|f(x) \ dx<\inftyE[∣g(X)∣]=∫∣g(x)∣f(x) dx<∞