FIND ME ON

GitHub

LinkedIn

Axioms of Probability

🌱

Theorem
Probability

Given sample space SS and event space F\mathcal{F}. A real-valued function PP on F\mathcal{F} is called a probability function if: 1. P(E)≄0P(E)\geq0 2. P(S)=1P(S)=1 3. If EiE_i are disjoint for i∈Ni\in\mathbb{N} then P(ā‹ƒi=1āˆžEi)=āˆ‘i=1āˆžP(Ei)P(\bigcup_{i=1}^\infty E_i) = \sum_{i=1}^\infty P(E_i)

Proposition (Probability Rules)

Let A1,...,AnA_1,...,A_n be events. 1. P(āˆ…)=0P(\emptyset)=0 2. Finite Additivity: If A1,...,AnA_1,...,A_n are disjoint, then: P(ā‹ƒi=1nAi)=āˆ‘i=1nP(Ai)P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i) 3. P(A1c)=1āˆ’P(A1)P(A^c_1)=1-P(A_1) 4. If A1āŠ‚A2A_1\subset A_2, then P(A1)≤P(A2)P(A_1)\leq P(A_2)

Linked from