FIND ME ON

GitHub

LinkedIn

Joint Distribution Function

🌱

Probability

Definition

Let X=(X1,...,Xn)TX=(X_1,...,X_n)^T be a random vector. The joint distribution function of XX is defined by FX(x)=P(X1x1,...,Xnxn)=P({X1x1}...{Xnxn})=P((,x1]××(,xn])=P(Ax), where Ax=(,x1]××(,xn]Rn \begin{align*} F_X(x)&=P(X_1\le x_1,...,X_n\le x_n)\\ &=P(\{X_1\le x_1\}\cap...\cap\{X_n\le x_n\})\\ &=P((-\infty,x_1]\times\cdots\times(-\infty,x_n])\\ &=P(A_x), \ \text{where} \ A_x=(-\infty,x_1]\times\cdots\times(-\infty,x_n]\subset\mathbb{R}^n \end{align*} ## Proposition (Properties of JDF) 1. 0FX(x)1 ,xRn0\le F_X(x)\le 1 \ , \forall x\in\mathbb{R}^n 2. FX(x)F_X(x) is right continuous.