Definition
Let X=(X1,...,Xn)T be a random vector. The joint distribution function of X is defined by FX(x)=P(X1≤x1,...,Xn≤xn)=P({X1≤x1}∩...∩{Xn≤xn})=P((−∞,x1]×⋯×(−∞,xn])=P(Ax), where Ax=(−∞,x1]×⋯×(−∞,xn]⊂Rn ## Proposition (Properties of JDF) 1. 0≤FX(x)≤1 ,∀x∈Rn 2. FX(x) is right continuous.