A continuous RVX is called gamma with parameters α>0 and, λ>0 if it has pdf
f(x)=\left\{
\begin{array}
1\frac{\lambda^\alpha}{\Gamma(\alpha)}x^{r-1}e^{-\lambda x}&x>0\\
0&x\le0
\end{array}
\right.
where Γ(α)=∫0∞yα−1e−ydywhere E[X]E[Xk]\mboxVar(X)=λα=λk1(k+α−1)(k+α−2)⋯α=λ2α # Theorem (Properties of Gamma Function) 1. Γ(1)=1 2. Γ(1/2)=π 3. Recursive Property:Γ(α)=(r−1)Γ(r−1)=(r−1)!