FIND ME ON

GitHub

LinkedIn

Gamma Random Variable

🌱

Probability

Definition

A continuous RV XX is called gamma with parameters α>0\alpha>0 and, λ>0\lambda>0 if it has pdf f(x)=\left\{ \begin{array} 1\frac{\lambda^\alpha}{\Gamma(\alpha)}x^{r-1}e^{-\lambda x}&x>0\\ 0&x\le0 \end{array} \right. where Γ(α)=0yα1eydy\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1}e^{-y}dywhere E[X]=αλE[Xk]=1λk(k+α1)(k+α2)α\mboxVar(X)=αλ2\begin{align*} E[X]&=\frac{\alpha}{\lambda}&\\\\ E[X^{k}]&=\frac{1}{\lambda^{k}}(k+\alpha-1)(k+\alpha-2)\cdots \alpha\\\\ \mbox{Var}(X)&=\frac{\alpha}{\lambda^{2}} \end{align*} # Theorem (Properties of Gamma Function) 1. Γ(1)=1\Gamma(1)=1 2. Γ(1/2)=π\Gamma(1/2)=\sqrt{\pi} 3. Recursive Property: Γ(α)=(r1)Γ(r1)=(r1)!\Gamma(\alpha)=(r-1)\Gamma(r-1)=(r-1)!