NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let X∈Λ2(P,M)X\in\Lambda^{2}(\mathscr{P},M)X∈Λ2(P,M), let 0≤s<t0\le s<t0≤s<t, let ZZZ be Fs\mathcal{F}_{s}Fs-measurable and bounded. Then: 1. 1(s,t]Z\mathbb{1}_{(s,t]}Z1(s,t]Z is P\mathscr{P}P-measurable (i.e. predictable) 2. 1(s,t]ZX∈L2(R+×Ω,P,μM)\mathbb{1}_{(s,t]}ZX\in L^{2}(\mathbb{R}^{+}\times\Omega,\mathscr{P},\mu_{M})1(s,t]ZX∈L2(R+×Ω,P,μM) 3. ∫1(s,t]ZX dM=Z∫1(s,t]X dM a.s.\int\limits \mathbb{1}_{(s,t]}ZX \, dM =Z\int\limits \mathbb{1}_{(s,t]}X \, dM \text{ a.s.}∫1(s,t]ZXdM=Z∫1(s,t]XdM a.s.