FIND ME ON

GitHub

LinkedIn

Independence of Bounded RV

🌱

Theorem
StochasticDiffs

Theorem

Let XΛ2(P,M)X\in\Lambda^{2}(\mathscr{P},M), let 0s<t0\le s<t, let ZZ be Fs\mathcal{F}_{s}-measurable and bounded. Then: 1. 1(s,t]Z\mathbb{1}_{(s,t]}Z is P\mathscr{P}-measurable (i.e. predictable) 2. 1(s,t]ZXL2(R+×Ω,P,μM)\mathbb{1}_{(s,t]}ZX\in L^{2}(\mathbb{R}^{+}\times\Omega,\mathscr{P},\mu_{M}) 3. 1(s,t]ZXdM=Z1(s,t]XdM a.s.\int\limits \mathbb{1}_{(s,t]}ZX \, dM =Z\int\limits \mathbb{1}_{(s,t]}X \, dM \text{ a.s.}