NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let M,NM,NM,N be continuous local martingales. Let X∈Λ2(P,M)X\in\Lambda^{2}(\mathscr{P},M)X∈Λ2(P,M), Y∈Λ2(P,N)Y\in\Lambda^{2}(\mathscr{P},N)Y∈Λ2(P,N). We denote X⋅MX\cdot MX⋅M as X⋅M=(∫1[0,t]X dM)t≥0X\cdot M=\left( \int\limits \mathbb{1}_{[0,t]}X \, dM \right)_{t\ge 0}X⋅M=(∫1[0,t]XdM)t≥0Then [X⋅M,Y⋅N]t=∫0tXsYs d[M,N]s∀t≥0[X\cdot M,Y\cdot N]_{t}=\int\limits _{0}^{t}X_{s}Y_{s} \, d[M,N]_{s}\quad\forall t\ge 0 [X⋅M,Y⋅N]t=0∫tXsYsd[M,N]s∀t≥0In particular: [X⋅M]t=∫0tXs2 d[M]s[X\cdot M]_{t}=\int\limits _{0}^{t}X_{s}^{2} \, d[M]_{s} [X⋅M]t=0∫tXs2d[M]s