FIND ME ON

GitHub

LinkedIn

Mutual Variation of Itô Stochastic Integrals

🌱

Theorem
StochasticDiffs

Theorem

Let M,NM,N be continuous local martingales. Let XΛ2(P,M)X\in\Lambda^{2}(\mathscr{P},M), YΛ2(P,N)Y\in\Lambda^{2}(\mathscr{P},N). We denote XMX\cdot M as XM=(1[0,t]XdM)t0X\cdot M=\left( \int\limits \mathbb{1}_{[0,t]}X \, dM \right)_{t\ge 0}Then [XM,YN]t=0tXsYsd[M,N]st0[X\cdot M,Y\cdot N]_{t}=\int\limits _{0}^{t}X_{s}Y_{s} \, d[M,N]_{s}\quad\forall t\ge 0 In particular: [XM]t=0tXs2d[M]s[X\cdot M]_{t}=\int\limits _{0}^{t}X_{s}^{2} \, d[M]_{s}