FIND ME ON

GitHub

LinkedIn

Quadratic Variation

🌱

Theorem
StochasticDiffs

Theorem

Let MM be a continuous local martingale. Let t≄0t\ge 0, and let (Ļ€tn)(\pi_{t}^{n}) be a sequence of subdivisions of [0,t][0,t] with mesh āˆ£Ļ€tnāˆ£ā†’0|\pi_{t}^{n}|\to 0 as nā†’āˆžn\to \infty.

For n∈Nn\in\mathbb{N}, let Stn=āˆ‘i=0Nāˆ’1(Mti+1āˆ’Mti)2S_{t}^{n}=\sum_{i=0}^{N-1}(M_{t_{i+1}}-M_{t_{i}})^{2} where Ļ€tn=(t0,…,tN)\pi_{t}^{n}=(t_{0},\dots,t_{N}). Then: 1. If MM is bounded, then (Stn)n∈N(S_{t}^{n})_{n\in\mathbb{N}} converges in L2L^{2} to [M]t=Mt2āˆ’M02āˆ’2∫1[0,t]M dM[M]_{t}=M_{t}^{2}-M_{0}^{2}-2\int\limits \mathbb{1}_{[0,t]}M \, dM 2. (Stn)n∈N(S_{t}^{n})_{n\in\mathbb{N}} converges in probability to [M]t[M]_{t}

([M]t)t≄0([M]_{t})_{t\ge 0} is called the quadratic variation process of MM.

Linked from