FIND ME ON

GitHub

LinkedIn

Disintegration

🌱

Definition
ProbabilityStochasticProcesses

Let  (X,B(X))(\mathbb{X}, \mathcal{B}(\mathbb{X}))  and  (Y,B(Y))(\mathbb{Y}, \mathcal{B}(\mathbb{Y}))  be measurable spaces, and let P\mathbb{P} be a probability measure on  X×Y\mathbb{X} \times \mathbb{Y}. Disintegration is the process of finding: 1. A marginal probability measure μP(X)\mu \in\mathcal{P}(\mathbb{X}), 2. A Stochastic Kernel P(dyx)P(Y)\mathbb{P}(dy \mid x)\in\mathcal{P}(\mathbb{Y}),

such that for any measurable function f:X×YRf: \mathbb{X} \times \mathbb{Y} \to \mathbb{R}, X×Yf(x,y)P(dx,dy)=X(Yf(x,y)P(dyx))μ(dx).\int_{\mathbb{X} \times \mathbb{Y}} f(x, y) \mathbb{P}(dx, dy) = \int_X \left( \int_{\mathbb{Y}} f(x, y) \mathbb{P}(dy \mid x) \right) \mu(dx). this expresses the joint measure P(dx,dy)\mathbb{P}(dx, dy) as an integral of conditionals against the marginal measure μ(dx)\mu(dx).