FIND ME ON

GitHub

LinkedIn

Construction of Invariant measure

🌱

Definition
StochasticProcesses

Countable state space

For a Markov chain, if there exists an element ii such that Ei[τi]<E_{i}[τ_{i}] < ∞; the following is an Invariant probability measure πk=E[j=0τi11{xj=k}Ei[τi]|x0=i],kX\pi_{k}=\mathbb{E} \left[ \frac{\sum_{j=0}^{\tau_{i}-1}\mathbb{1}_{\{ x_{j}=k \}}}{\mathbb{E}_{i}[\tau_{i}]}\middle|x_{0}=i \right], \, k\in \mathbb{X}

Uncountable state space

For a Irreducible Markov chain for which Eα[τα]<\mathbb{E}_{\alpha}[\tau_{\alpha}]<\infty for Atom α\alpha, the following is the Invariant probability measure π(A)=E[j=0τα11{xjA}Eα[τα]|x0α],AB(X)\pi(A)=\mathbb{E} \left[ \frac{\sum_{j=0}^{\tau_{\alpha}-1}\mathbb{1}_{\{ x_{j}\in A \}}}{\mathbb{E}_{\alpha}[\tau_{\alpha}]}\middle|x_{0}\in\alpha \right], \, A\in \mathcal{B}(\mathbb{X})