Let {Xiā}i=0āā be a MC with an arbitrary initial distribution Ī» and transition matrix P. If P is 1. irreducible 2. aperiodic 3. has an invariant distribution (or is positive recurrent) then jāSsupāā£P(Xnā=j)āĻjāā£ā0,\mboxasnāā.
Let {Xtā:tā„0}ā¼\mboxMarkov(Ī»,Q). If the jump chain {Ynā:nā„0} is irreducible, and Q has an invariant distribution Ļ, then for all i,jāI, tāālimāpijā(t)=Ļjā